--- title: 'Alakazam: Gene usage analysis' author: "Susanna Marquez" date: '`r Sys.Date()`' output: pdf_document: dev: pdf fig_height: 4 fig_width: 7.5 highlight: pygments toc: yes md_document: fig_height: 4 fig_width: 7.5 preserve_yaml: no toc: yes html_document: fig_height: 4 fig_width: 7.5 highlight: pygments theme: readable toc: yes geometry: margin=1in fontsize: 11pt vignette: > %\VignetteEngine{knitr::rmarkdown} %\VignetteIndexEntry{Gene usage analysis} %\usepackage[utf8]{inputenc} --- The 'alakazam' package provides basic gene usage quantification by either sequence count or clonal grouping; with or without consideration of duplicate reads/mRNA. Additionally, a set of accessory functions for sorting and parsing V(D)J gene names are also provided. ## Example data A small example AIRR database, `ExampleDb`, is included in the `alakazam` package. For details about the AIRR format, visit the [AIRR Community documentation site](https://docs.airr-community.org/en/stable/datarep/rearrangements.html). Gene usage analysis requires only the following columns: * `v_call` * `d_call` * `j_call` However, the optional clonal clustering (`clone_id`) and duplicate count (`duplicate_count`) columns may be used to quantify usage by different abundance criteria. ```{r, eval=TRUE, warning=FALSE, message=FALSE} # Load required packages library(alakazam) library(dplyr) library(scales) # Subset example data data(ExampleDb) ``` ## Tabulate V(D)J allele, gene or family usage by sample The relative abundance of V(D)J alleles, genes or families within groups can be obtained with the function `countGenes`. To analyze differences in the V gene usage across different samples we will set `gene="v_call"` (the column containing gene data) and `groups="sample_id"` (the columns containing grouping variables). To quantify abundance at the gene level we set `mode="gene"`: ```{r, eval=TRUE, warning=FALSE} # Quantify usage at the gene level gene <- countGenes(ExampleDb, gene="v_call", groups="sample_id", mode="gene") head(gene, n=4) ``` In the resultant `data.frame`, the `seq_count` column is the number of raw sequences within each `sample_id` group for the given `gene`. `seq_freq` is the frequency of each `gene` within the given `sample_id`. Below we plot only the IGHV1 abundance by filtering on the `gene` column to only rows containing IGHV1 family genes. We extract the family portion of the gene name using the `getFamily` function. Also, we take advantage of the `sortGenes` function to convert the `gene` column to a factor with gene name lexicographically ordered in the factor levels (`method="name"`) for axis ordering using the `ggplot2` package. Alternatively, we could have ordered the genes by genomic position by passing `method="position"` to `sortGenes`. ```{r, eval=TRUE, warning=FALSE} # Assign sorted levels and subset to IGHV1 ighv1 <- gene %>% mutate(gene=factor(gene, levels=sortGenes(unique(gene), method="name"))) %>% filter(getFamily(gene) == "IGHV1") # Plot V gene usage in the IGHV1 family by sample g1 <- ggplot(ighv1, aes(x=gene, y=seq_freq)) + theme_bw() + ggtitle("IGHV1 Usage") + theme(axis.text.x=element_text(angle=45, hjust=1, vjust=1)) + ylab("Percent of repertoire") + xlab("") + scale_y_continuous(labels=percent) + scale_color_brewer(palette="Set1") + geom_point(aes(color=sample_id), size=5, alpha=0.8) plot(g1) ``` Alternatively, usage can be quantified at the allele (`mode="allele"`) or family level (`mode="family"`): ```{r, eval=TRUE, warning=FALSE} # Quantify V family usage by sample family <- countGenes(ExampleDb, gene="v_call", groups="sample_id", mode="family") # Plot V family usage by sample g2 <- ggplot(family, aes(x=gene, y=seq_freq)) + theme_bw() + ggtitle("Family Usage") + theme(axis.text.x=element_text(angle=45, hjust=1, vjust=1)) + ylab("Percent of repertoire") + xlab("") + scale_y_continuous(labels=percent) + scale_color_brewer(palette="Set1") + geom_point(aes(color=sample_id), size=5, alpha=0.8) plot(g2) ``` ## Tabulating gene abundance using additional groupings The `groups` argument to `countGenes` can accept multiple grouping columns and will calculate abundance within each unique combination. In the examples below, groupings will be perform by unique sample and isotype pairs (`groups=c("sample_id", "c_call")`). Furthermore, instead of quantifying abundance by sequence count, we will quantify it by clone count (each clone will be counted only once regardless of how many sequences the clone represents). Clonal criteria are added by passing a value to the `clone` argument of `countGenes` (`clone="clone_id"`). For each clonal group, only the most common allele/gene/family will be considered for counting. ```{r, eval=TRUE, warning=FALSE} # Quantify V family clonal usage by sample and isotype family <- countGenes(ExampleDb, gene="v_call", groups=c("sample_id", "c_call"), clone="clone_id", mode="family") head(family, n=4) ``` The output `data.frame` contains the additional grouping column (`c_call`) along with the `clone_count` and `clone_freq` columns that represent the count of clones for each V family and the frequencies within the given `sample_id` and `c_call` pair, respectively. ```{r, eval=TRUE, warning=FALSE} # Subset to IGHM and IGHG for plotting family <- filter(family, c_call %in% c("IGHM", "IGHG")) # Plot V family clonal usage by sample and isotype g3 <- ggplot(family, aes(x=gene, y=clone_freq)) + theme_bw() + ggtitle("Clonal Usage") + theme(axis.text.x=element_text(angle=45, hjust=1, vjust=1)) + ylab("Percent of repertoire") + xlab("") + scale_y_continuous(labels=percent) + scale_color_brewer(palette="Set1") + geom_point(aes(color=sample_id), size=5, alpha=0.8) + facet_grid(. ~ c_call) plot(g3) ``` Instead of calculating abundance by sequence or clone count, abundance can be calculated using copy numbers for the individual sequences. This is accomplished by passing a copy number column to the `copy` argument (`copy="duplicate_count"`). Specifying both `clone` and `copy` arguments is not meaningful and will result in the `clone` argument being ignored. ```{r, eval=TRUE, warning=FALSE} # Calculate V family copy numbers by sample and isotype family <- countGenes(ExampleDb, gene="v_call", groups=c("sample_id", "c_call"), mode="family", copy="duplicate_count") head(family, n=4) ``` The output `data.frame` includes the `seq_count` and `seq_freq` columns as previously defined, as well as the additional copy number columns `copy_count` and `copy_freq` reflected the summed copy number (`duplicate_count`) for each sequence within the given `gene`, `sample_id` and `c_call`. ```{r, eval=TRUE, warning=FALSE} # Subset to IGHM and IGHG for plotting family <- filter(family, c_call %in% c("IGHM", "IGHG")) # Plot V family copy abundance by sample and isotype g4 <- ggplot(family, aes(x=gene, y=copy_freq)) + theme_bw() + ggtitle("Copy Number") + theme(axis.text.x=element_text(angle=45, hjust=1, vjust=1)) + ylab("Percent of repertoire") + xlab("") + scale_y_continuous(labels=percent) + scale_color_brewer(palette="Set1") + geom_point(aes(color=sample_id), size=5, alpha=0.8) + facet_grid(. ~ c_call) plot(g4) ```